托福 托福 59 - Dealing with Extreme Cold
题目
1 2 3 4 5 6 7 8 9 10 11 12 13 14
9.The information about the "overwintering larvae of a beetle from northern Indiana''is presented to show
  • A.that the particular cold-survival strategy an organism adopts is not necessarily a permanent characteristic of the species
  • B.how long it takes an organism lo switch from one cold-surviving strategy to the other
  • C.what types of adaptation make it possible for an organism to switch between the two cold-surviving strategies
  • D.why adopting a freeze-avoiding strategy for cold survival rather than a freezing-tolerant strategy might be advantaaeous
  • 正确答案:
    答案解析:
    答题统计
    答题统计

    登录 后才可以查看答案解析,还没有账号?

    还没有账号?马上 注册 >>

    阅读原文 中文译文

    There are a number of environments in which organisms are exposed to temperatures be-low 0 ℃ and thus the risk of freezing. In polar regions, terrestrial organisms are exposed to freezing temperatures for most of the year. In more temperate regions, they may have to tolerate several months of winter, when subzero temperatures persist for long periods of time. High mountains are another place where there is permanent snow and ice, even at the equator. Exposure to subzero temperatures may occur on a daily and/or seasonal basis.

    Endothermic animals (warm-blooded animals) can stop their bodies from freezing by generating their own heat. They retain heat because of the insulation provided by feathers or fur, and the layer of fat beneath the skin. Other heat conservation measures include huddling together, recovering heat from exhaled breath, and recovering heat from the extremities of the body. Endotherms can remain active in the cold if they can find enough food, or they can reduce their metabolism and lie dormant until warmer conditions return. Although air temperatures may be low, the temperature beneath an insulating layer of snow, under the ground, or at the bottom of a lake may remain above 0℃. Most organisms, however, can neither generate their own heat nor avoid the freezing temperatures, and for them, the choice is to survive ice formation within their bodies or to prevent their bodies from freezing.

    Organisms run the risk of freezing at temperatures that are below the melting point of their body and cell fluids. There are two main responses: either they can survive ice forming within them (they are freezing tolerant) or they have mechanisms that ensure that their fluids remain liquid at temperatures that are below the freezing point of water and the melting point of their body fluids (they are freeze avoiding). The strategy that an organism uses depends on the structure and physiology it has developed during its evolutionary history and on the particular demands of its environment. If the organism is living in a wet or damp environment, ice is l!kely to make contact with its surface when its surroundings freeze This may cause its body fluids to freeze by the ice traveling across the cell or body wall, or through body openings-a process known as inoculative freezing. Most organisms surviving low temperatures in such environments are thus likely to be freezing tolerant, since inoculative freezing will cause their bodies to freeze Some, however, may have a structure such as a cuticle, eggshell, cocoon, or sheath that allows them to prevent inoculative freezing by acting as a barrier to the spread of ice into their bodies This allows them to maintain their body or cell fluids as liquids, despite the fact that their surfaces are in contact with external ice, and enables them to avoid inoculative freezing. ln a situation where the organism is likely to be exposed to subzero temperatures with little or no water in contact with its surface (many terrestrial insects, for example), it does not have the problem of inoculative freezing and it is perhaps easier for it to maintain its body fluids in a liquid state at low temperatures and thus survive by avoiding freezing.

    The two strategies of cold survival are, however, not always mutually exclusive. There have been a few reports of insects that were apparently freezing tolerant switching to being freeze avoiding. The overwintering larvae of a beetle from northern Indiana, when studied in the winters of 1977-1979, froze at -8 ℃ to -12 ℃ but survived down to -28 ℃. When examined again in 1982, however, they froze and were killed at -26℃, apparently switching from a freezing-tolerant to a freeze-avoiding strategy during the intervening years. There are adaptations in common between freeze-avoiding and freezing-tolerant insects that may make it easy to switch between the two strategies. It must be said, however, there has been only one other report of an insect, another beetle, displaying a shift in strategy of this sort. One Antarctic nematode is freezing tolerant when immersed in water but, when free of surface water, there is, of course, no inoculative freezing and it can survive by avoiding freezing. The cold-tolerance strategy displayed thus depends on the particular characteristics of the animal's microenvironment.

    留言区中有很多我们对问题的解答喔, 登录后可以查看

    还没有账号?马上 注册 >>

    最新提问
    • wx_6697
      觉得B C 意思一样,不知道选哪个
    • wx_5576
      这道题C为什么对,E为什么不对?
    • wx_5576
      B为什么不能选啊?
    • wx_6697
      TPO30 passage 2 Q5我选的 D,不明白为啥不对?
    • wx_6697
      鑫哥,TPO6passage3Q5 答案是给错了吗?好多人都选A
    • wx_6697
      这题也很容易选错选成了D
    • wx_6697
      这道题A为什么错了
    • 芊儿
      为什么这道题不选c??a中的variety不是应该对应文中的differentiating 吗??求解!
    • wx_1000
      这道题不选E是因为太细节了吗
    • 王金阁
      这个题为什么不选C啊。。。
    • 芊儿
      这道题的D选项不是和文中的better able to reproduce in open settings相对应么??
    • 风荨火
      有大佬解释一下这个为啥选D嘛?
    • 以沫
      请问这个D 在哪里提现?为什么D错?
    • 芊儿
      第六题 的C选择为什么不对,感觉A是明显驳斥啊...
    • wx_6697
      鑫哥,这道题D是从哪里看出来的
    • wx_6697
      这题选的A,根据是Joly’s calculations clearly supported those geologists who insisted on an age for Earth far in excess of a few million years.想问鑫哥为啥不选A
    • wx_6697
      这题我选的是C依据是into a new habitat outside of its natural range, it may adapt to the new environment and leave its enemies behind.C为啥错了呢?鑫哥
    • wx_8861
      F选项的weather-related destruction在哪里体现了呢?原文最后一段的开头Among the costs里的costs是不是打错了?应该是coast?
    • wx_6697
      求问这道题B为啥不选,原文依据:viable seeds of pioneer species can be found in large numbers on some forest floors.
    • 与托福的斗争史
      与托福的斗争史 去解答 去解答
      这题为什么选C?
    • 小雨淅沥哗啦的下
      小雨淅沥哗啦的下 去解答 去解答
      B哪里错了
    • 小雨淅沥哗啦的下
      小雨淅沥哗啦的下 去解答 去解答
      B为啥不对
    • 李浩然
      B选项错误,是因为残缺么?
    • wx_100
      请问在做题的时候如何排除c呢。看了答案,感觉是该选a的,但是当时做题脑子一热,就特别钟爱c,也没看其他选项。。求敲醒。。
    • wx xxxxx
      请问鑫哥,这段开头有写As one pesticide replaces another为什么不是对应a new pesticide is developed?
    • wx_7695
      鑫哥,从哪里看出来这个masks 不是use呀,原文说了wear呀
    • haiyuqiao
      @鑫哥,这题the damage will continue 不应该对应前面的 the target species evolves resistance to it,然后As one pesticide replaces another,不应该是结束了time cycle 吗
    • wx_2065
      鑫哥,想知道E错在哪里?
    • wx_7695
      鑫哥,B选项 cannot extended to earlier geological periods. 原文说的意思是后来的进化无法估计吧
    • wx_2163
      B为什么不选
    • wx_7780
      鑫哥,这个哪里看不use了。BD是修饰错,C是无中生有,怎么能直接选出A?
    • 100
      看到第一句话,以为是中心句就选了A... 为什么不能选A呢
    • 100
      为什么选b?
    • gu33
      请问下 这里选D的原因是 因为 evolutionary approach 对应着 原文的 Rates of evolution 嘛? 这里我选了C。。不是很懂 插入句和 D的关系 求解答
    • 我是啦啦啦
      我是啦啦啦 去解答 去解答
      这个题A哪里错了?是因为主语不对吗?这个C比A多一步推理啊
    • haiyuqiao
      鑫哥,D选项里的19世纪出现了很多假设,原文中并没有提到啊
    • wx_7060
      为什么选a 呢。我觉得a是细节。F哪错了?
    • wx_1105
      我想问一下,这道题为什么不能选A呢?
    • wx_8122
      D为什么不选
    • wx_1655
      f选项哪里说了
    • chaulaw
      鑫哥,原文是below经济损害水平,D是一触发经济损害就用,这也对吗?
    • chaulaw
      interclan婚姻是对的吗?不是只在自己的family结婚扩大家族吗?
    • wx_6697
      鑫哥,这道题答案是不是错了,好多人选D 我也选的D求解答
    • wx_6697
      这道题应该是一道易错题,每个选项的都有,然而我选的A错了,求解
    • wx_6697
      鑫哥,这题的C是怎么得到的?B也没有找到啊?难道不是应该选B
    • wx_6697
      鑫哥,还有这个,好多人选A答案是不是错了
    • wx_6697
      求问D是从哪里得出来的,我选的B呀哎呀
    • wx_4185
      it is difficult to say how far they were intended to be portraits rather than generalized images 这句话怎么理解呢
    • 此楠楠
      请问下这个插入题怎么选的呢?
    • 此楠楠
      求鑫哥讲解下A选项。。。 Even though in error, Joly’s calculations clearly supported those geologists who insisted on an age for Earth far in excess of a few million years.